
1Data Structures Department of Computer Science – University of Zakho

Stack

2Data Structures Department of Computer Science – University of Zakho

Stack ADT

 A stack is a data structure in which all access is restricted to the most recently
inserted element.

▪ Stack has only one end.

 Insertions and deletions follow last-in first-out (LIFO) scheme (principle).

▪ It means the element added last will be removed first.

 Main operations:

▪ push(object): insert element

▪ object pop(): remove and returns last element

 Auxiliary operations:

▪ object top(): returns last element without removing it.

▪ integer size(): returns number of elements stored.

▪ boolean isEmpty(): returns whether no elements are stored.

3Data Structures Department of Computer Science – University of Zakho

Applications of Stacks

 Direct

▪ Page visited history in a web browser.

▪ Undo sequence in a text editors.

▪ Chain of method calls in C++ runtime environment.

▪ Stack is used to evaluate prefix, postfix and infix expressions.

▪ An expression can be represented in prefix, postfix or infix notation.
Stack can be used to convert one form of expression to another.

 Indirect

▪ Auxiliary data structure for algorithms.

▪ Component of other data structures.

4Data Structures Department of Computer Science – University of Zakho

Array-based Stack

 Add elements in an array S of capacity(size) N.

 A variable top keeps track of the index of the top element.

 Size is top+1

S

0 1 2

…

t

5Data Structures Department of Computer Science – University of Zakho

Push and Pop Algorithms

Algorithm push(Element):

if top= N-1 then

throw “Full Stack Exception”

else

top top + 1

S[top]  Element

Run time: O(1)

Algorithm pop():

if isEmpty() then

throw “Empty Stack Exception”

else

top top − 1

return S[top + 1]

Run Time: O(1)

6Data Structures Department of Computer Science – University of Zakho

Stack Operations - Example

Push (7)

{

if top==N-1 Then

“Overflow”

else

Top=Top+1

S[top]=7

}

Stack S, N=7, Top=-1

0

1

2

6

3

4

5

7

Stack S, N=7

0

1

2

6

Top

3

4

5

7Data Structures Department of Computer Science – University of Zakho

Stack Operations - Example

Push (3)

{

if top==N-1 Then

“Overflow”

else

Top=Top+1

S[top]=3

}
7

Stack S, N=7

0

1

2

6

Top

3

4

5

7

3

Stack S, N=7

0

1

2

6

Top

3

4

5

8Data Structures Department of Computer Science – University of Zakho

Stack Operations - Example

Push (5)

{

if top==N-1 Then

“Overflow”

else

Top=Top+1

S[top]=5

}7

3

Stack S, N=7

0

1

2

6

Top

3

4

5

7

3

5

Stack S, N=7

0

1

2

6

Top

3

4

5

9Data Structures Department of Computer Science – University of Zakho

Stack Operations - Example

Push (9)

{

if top==N-1 Then

“Overflow”

else

Top=Top+1

S[top]=9

}7

3

5

Stack S, N=7

0

1

2

6

Top

3

4

5

7

3

5

Stack S, N=7

0

1

2

6

Top
9 3

4

5

10Data Structures Department of Computer Science – University of Zakho

Stack Operations - Example

Pop ()

{

if isEmpty() then

“Underflow”

else

Top=Top-1

return S[top+1]

}
7

3

5

Stack S, N=7

0

1

2

6

Top

3

4

5

7

3

5

Stack S, N=7

0

1

2

6

Top
9 3

4

5

11Data Structures Department of Computer Science – University of Zakho

Stack Operations - Example

Pop ()

{

if isEmpty() then

“Underflow”

else

Top--

return S[top+1]

}
7

3

Stack S, N=6

0

1

2

6

Top

3

4

5

7

3

5

Stack S, N=6

0

1

2

6

Top

3

4

5

12Data Structures Department of Computer Science – University of Zakho

Arithmetic Expression

13Data Structures Department of Computer Science – University of Zakho

Arithmetic Expressions

 An arithmetic expression is an expression that results in a numeric

value.

 It is a correct combination of numbers, operators, parenthesis, and

variables.

 Expressions are usually represented in what is known as Infix notation,

in which each operator is written between two operands

 Example: A + B

▪ A and B are called Operands

▪ + is called the operator

14Data Structures Department of Computer Science – University of Zakho

Arithmetic Expressions

 Infix form

▪ Need precedence rules

▪ May use parentheses.

 Example: 2+4*3 What is the result?

▪ Apply precedence rules (* has higher precedence than +)

▪ We may use parentheses rules (2+4)*3 or 2+(4*3)

15Data Structures Department of Computer Science – University of Zakho

Rules of Precedence for Arithmetic Operators

Operator Rule of Precedence

^ Exponentiation (^) is performed

first

* / Multiplication (*) and division (/)

are performed following

exponentiation.

+ - Addition (+) and subtraction (-)

are performed last.

• Use parentheses to override precedence rules

16Data Structures Department of Computer Science – University of Zakho

There are two more forms for representing

an arithmetic expressions in which they

do not need precedence rules or

parentheses:

- postfix

- prefix

17Data Structures Department of Computer Science – University of Zakho

Arithmetic Expressions

 Postfix form: Refers to the notation in which the operator symbol is placed after its two
operands

▪ Operator appears after the operands

o Infix: (4+3)*5 → Postfix: 4 3 + 5 *

o Infix: 4+(3*5) → Postfix: 4 3 5 * +

▪ No precedence rules or parentheses!

 Prefix Form: Refers to the notation in which the operator symbol is placed before its two
operands.

▪ Operator appears before the operands

o Infix: (4+3)*5 → Prefix: *+4 3 5

o Infix: 4+(3*5) → Prefix: +4 *3 5

▪ No precedence rules or parentheses!

 Two Questions:

▪ How to convert an infix form to postfix and prefix forms.

▪ How to evaluate an expression given in postfix and prefix forms.

18Data Structures Department of Computer Science – University of Zakho

Stack Applications
Arithmetic Expression

• Conversions

• Evaluations

19Data Structures Department of Computer Science – University of Zakho

Example: Infix to Postfix

 Example1 :

A + B * C + D

A+BC*+D

ABC*++D

ABC*+D+

 Example2:

A * B + C * D

AB*+C*D

AB*+CD*

AB*CD*+

 Example3:

A +B*C-D/E*F

 A +BC*-D/E*F

A +BC*-DE/*F

A +BC*-DE/F*

A BC*+-DE/F*

A BC*+DE/F*-

 Example4:

(A+B)*(C+D)

 (A B+)*(C+D)

 (A B+)*(CD+)

 (AB)+(CD+)*

AB+CD+*

20Data Structures Department of Computer Science – University of Zakho

Example: Infix to Prefix

 Example1 :

A + B * C + D

A+*BC+D

A++*BCD

+A+*BCD

 Example2:

A * B + C * D

A*B+*CD

 *AB+*CD

+*AB*CD

 Example3:

A +B*C-D/E*F

 A +B*C-D/*EF

A +B*C-/D*EF

A +*BC-/D*EF

A +-*BC/D*EF

+A -*BC/D*EF

 Example4:

(A +B)*(C+D)

 (A+ B)*(+CD)

 (+A B)*(+CD)

 *(+A B)(+CD)

 *+A B+CD

21Data Structures Department of Computer Science – University of Zakho

Infix to Postfix Algorithm

While (we have not reached the end of infix expression) // Read from left to right.

If (an operand is found) then

Add it to Postfix

If (a left parenthesis ‘(‘ is found) then

Push it onto the stack

If (a right parenthesis ‘)’ is found) then

While (the stack is not empty AND the top item is not a left parenthesis)

Pop the stack and add the popped value to Postfix

End-While

Pop the left parenthesis from the stack and discard it

If (an operator is found) then

If (the stack is empty or if the top element is a left parenthesis) then

Push the operator onto the stack

22Data Structures Department of Computer Science – University of Zakho

Infix to Postfix Algorithm

Else

While (the stack is not empty AND the top of the stack is not a left parenthesis

AND precedence of the operator <= precedence of the top of the stack)

Pop the stack and add the top value to Postfix

End-While

Push the latest operator onto the stack

End-While

While (the stack is not empty)

Pop the stack and add the popped value to Postfix

End-While

23

While (we have not reached the end of infix expression)

If (an operand is found) then

Add it to Postfix

If (a left parenthesis ‘(‘ is found) then

Push it onto the stack

If (a right parenthesis ‘)’ is found) then

While (the stack is not empty AND the top item is not a left parenthesis)

Pop the stack and add the popped value to Postfix

End-While

Pop the left parenthesis from the stack and discard it

If (an operator is found) then

If (the stack is empty or if the top element is a left parenthesis) then

Push the operator onto the stack

Else

While (the stack is not empty AND the top of the stack is not a left parenthesis AND precedence of
the operator <= precedence of the top of the stack)

Pop the stack and add the top value to Postfix

End-While

Push the latest operator onto the stack

End-While

While (the stack is not empty)

Pop the stack and add the popped value to Postfix

End-While

Infix to

Postfix

Algorithm

24

 Infix Form: (A+B*C-D)/(E*F)

Token Stack Postfix

((

A (A

+ (+

B (+ AB

* (+*

C (+* ABC

- (- ABC*+

D (- ABC*+D

) ABC*+D-

/ /

(/(

E /(ABC*+D-E

* /(*

F /(* ABC*+D-EF

) / ABC*+D-EF*

ABC*+D-EF*/

Infix to Postfix

Algorithm

Example

25Data Structures Department of Computer Science – University of Zakho

- How to convert infix to prefix?

- What is the algorithm of

converting an infix to prefix?

Hint: update the little things from the algorithm of converting infix to postfix.

26Data Structures Department of Computer Science – University of Zakho

Evaluating a postfix expression Algorithm

While (we have not reached the end of expression) // Read from left to right.

If an operand is found then

push it onto the stack

If an operator is found then

// Pop Twice

A=Pop()

B=Pop()

Evaluate B operator A using the operator just found.

Push the resulting value onto the stack.

End-While

Pop the stack (this is the final value)

27

 Postfix: 244*+6-23*/

 Infix: (2+4*4-6)/(2*3)=2

Token Stack

2 2

4 2 4

4 2 4 4

* 2 16

+ 18

6 18 6

- 12

2 12 2

3 12 2 3

* 12 6

/ 2

Evaluating a

postfix

expression -

Example

28Data Structures Department of Computer Science – University of Zakho

How to evaluate a prefix expression?

Hint: update the little things from the algorithm of converting infix to postfix.

29Data Structures Department of Computer Science – University of Zakho

Stack Implementation
Array: We will use this first.

Linked Lists: Later to be implemented with list.

30Data Structures Department of Computer Science – University of Zakho

Lab Assignment
 Implement the Stack in C++ using OOP.

31Data Structures Department of Computer Science – University of Zakho

Exercises

32Data Structures Department of Computer Science – University of Zakho

Exercises

 A linear list of elements in which deletion and insertion can be done

from one side is known as a?

a) Queue.

b) Stack.

c) Tree.

d) Linked list.

 A Stack follows

a) FIFO (First In First Out) principle.

b) LIFO (Last In First Out) principle.

c) Ordered array.

d) Linear tree.

33Data Structures Department of Computer Science – University of Zakho

Exercises

 Convert the following infix expression to postfix expressions using
Stack data structure.

▪ (5 * (((9 + 8) * (4 * 6)) + 7))

▪ 6 * (5 + (2 + 3) * 8 + 3)

 Convert the following infix expression to prefix expressions using Stack data
structure.

▪ a + b * c + (d * e + f) * g

 For each of the of the following postfix expressions, find the infix.

▪ 6 5 2 3 + 8 * + 3 + *

▪ a b c * + d e * f + g * +

 Evaluate the following postfix expression

▪ 6 2 5 3 + 4 * + 3 + *

